Magdalena River Basin (Colombia)

Natural Environment

The Magdalena Basin is an Andean basin located in the west of Colombia between three north-south oriented mountain ranges, the Western, Central, and Eastern Cordilleras. The drainage basin area covers 257 438 km2, 24% of the country territory.  It reaches from the Andes at >3800 m a.s.l. in the south-west of the country to the coast of the Caribbean Sea in the north-east. The system is characterized by significant elevation differences which range from the sea level to the highest point of 5.617 m a.s.l. (Pico Colombia).

The Magdalena River is the largest river system of Colombia, with a length of 1528 km. The river originates at an elevation of 3685 m a.s.l. in the lagoon of Magdalena, located in the Páramo de las Papas (1°56′3’N; 76°36′29’W) and empties into the Caribbean Sea in the Metropolitan Area of Barranquilla (11°7′0′N; 74°51′0′W) (Guiterrez-Bonilla et al., 2011).

Geology

The geology of the Magdalena Basin consists of a variety of rock formations ranging in age from Palaeozoic to Tertiary as well as recent quaternary alluvial, colluvial and glacial deposits. Geological formation of the catchment divides it into five zones: the upper, medium and low basin, the Mompóx Depression with the Magdalena River Delta and the Cauca-Patía Basin. The upper basin primary consists of older Palaeozoic igneous and metamorphic rocks. In the eastern part of the upper catchment dominate recent Quaternary alluvial deposits and pyroclastic material of volcanic origin. Igneous and metamorphic rocks continue in the middle basin altering with lacustrine and colluvial deposits in Eastern Cordillera. The lower part of the basin is formed by marine sediments. In the Magdalena delta, located between the Sierra Nevada de Santa Marta massif and the coastal relief of the San Jacinto Belt, Tertiary alluvial deposits and magmatic and metamorphic rocks dominate the lithology. The whole catchment area is characterized by landslide activity and high tectonic activity. (Pontificia Universidad Católica de Valparaíso, 2015)

References:

Angarita, H., Wickel, A. J., Sieber, J., Chavarro, J.,  Maldonado Ocampo, J. A., Herrera-R, G. A., Delgado, J., Purkey D. (2018) Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia. Hydrology and Earth System Sciences (2018) 22, 2839–2865, DOI: 10.5194/hess-22-2839-2018.

Cardona-Almeida, C. A., Garay-Bohorquez, C., I. (2015) Magdalena River: a Tropical Institutionally Complex System, River and River Basin Strategies, https://www.graie.org/ISRivers/docs/papers/2C61-49711CAR.pdf.

Chavez, L. E., (2015) Paper 75 - The threats and challenges in navigating the Magdalena river. Smart Rivers 2015, http://www.pianc.org.ar/_stage/pdf/papers_sr2015/75_paper_ChavezPerdomo_COL_7.pdf.

Cormagdalena, (2011) Plan Maestro de aAprovechamiento del Río Magdalena: http://www.cormagdalena.gov.co/ (accessed 7.6.17).

Gutiérrez Bonilla, F. de P., Barreto Reyes, C., Páramo, B. M., (2011) Diagnóstico de la Pesquería en la Cuenca Magdalena-Cauca, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Pesquerías continentales de Colombia: cuencas del Magdalena-Cauca, Sinú, Canalete, Atrato, Orinoco, Amazonas y vertiente del Pacífico.

Hoyos, N., Escobar, J., Restrepo, J., Arango, A., & Ortiz, J. (2013) Impact of the 2010 and 2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. Applied Geography, 39, 16-25.

Kraaijenbrink, P., Lutz, A. and Droogers, P. (2014) ‘Climate adaptation Colombia: Climate data scaling and analysis for the Magdalena basin’, FutureWater Report 128.

Pontificia Universidad de Valparaíso (2015), Atlas de la Cuenca del Río Magdalena, https://wiki.ead.pucv.cl/images/1/1b/Atlas_cuenca_del_rio_magdalena_version_final.pdf.

Restrepo, J. C., Schrottke, K., Traini, C., Ortíz, J. C., Orejarena, A., Otero, L., Higgins A., Marriaga, L. (2015)  Sediment Transport and Geomorphological Change in a High-Discharge Tropical Delta (Magdalena River, Colombia): Insights from a Period of Intense Change and Human Intervention (1990–2010), Journal of Coastal Research, 00(0), 000– 000. Coconut Creek (Florida), ISSN 0749-0208.

Restrepo, J.;  Syvitski, J. P. M.  (2006) Assessing the Effect of Natural Controls and Land Use Change on Sediment Yield in a Major Andean River: The Magdalena Drainage Basin, Colombia, in Journal of the Human Environment · April 2006, DOI: 10.1579/0044-7447(2006)35[65:ATEONC]2.0.CO;2

Opperman, J., J. Hartmann, J. Raepple, H. Angarita, P. Beames. E. Chapin, R. Geressu, G. Grill, J. Harou, A. Hurford, D. Kammen, R. Kelman, E. Martin, T. Martins, R. Peters, C. Rogéliz, and R. Shirley (2017), The Power of Rivers: A Business Case. The Nature Conservancy: Washington, D.

Young, G., Zavala, H., Wandel, J., Smit, B., Salas, S., Jimenez, E., Fiebig, E., Espinoza, R., Diaz, H., Cepeda, J. (2010) Vulnerability and adaptation in a dryland community of the Elqui Valley, Chile, Climatic Change (2010) 98:245–276, DOI 10.1007/s10584-009-9665-4.

U.S. Agency for International Development (2017), ENV - Ecosystem-Based Adaptation in the Magdalena River Basin, https://www.usaid.gov/news-information/fact-sheets/env-ecosystem-based-adaptation-magdalena-river-basin.

FaLang translation system by Faboba