Water Security Toolbox

Supporting Material for the concept


Water Security emerged as a key goal for water resources management and describes the status of water being available in adequate quality and quantity for humans, ecosystems and for different economic activities. Furthermore it refers to the maintenance of ecosystem services which guarantee the sustainable provision of water and to the control of water related hazards. UN Water (2013 – follow this link) provides a definition of water security which can be useful to derive research themes as well as areas of management interventions. The following figure depicts the main topics related to the concept:

A fundamental requirement to advance in reaching water security within a given socio-ecological system (eg river basins or sub-basins) is to obtain a comprehensive system understanding providing a basic assessment of water availability and status of water resources over space and time and the water demands and use-efficiencies in different sectors. For this end research needs to provide tools to access and to analyze monitoring data from in-situ sources as well as from remote sensing products. Models are needed to understand the dynamics of water supply and demand, to assess intervention options at the technical, socio-economic or policy level and to develop scenarios. Last but not least indicator systems need to be developed providing decision makers basis for evaluating if the set goals are met.

Developing a water security toolbox

The Water Security Toolbox (WAST) will be designed as a platform for a reliable assessment of water availability, water demand, water use efficiency and scenario development; it supports the management of water resources and the implementation of water-related SDGs, particularly in countries with insufficient in-situ data availability.

It will be developed in cooperation with relevant decision makers and disseminated through user specific training packages both in the partner countries as well as e-learning based for a broader audience. After analyzing the decision-making process, the basic structure of the Water Security Toolbox will be developed and subsequently applied to six identified pilot areas. The design will be realized for each pilot application together with a local research partner and a central implementation partner. The local partners will be trained in the technical application and expansion of the toolbox as well as in the use of appropriate media for effective communication of project results.

The access to a variety of new markets offers a great market potential to all involved partners and companies. Innovative concepts developed by the project will be in worldwide demand to help implementing water-related SDGs. Universities can use the research results in the form of scientific publications. Furthermore, MSc and PhD students can carry out their study works in context of the pilot regions. The following figure shows the overall concept of the Water Security Toolbox.

IMplementation in pilot regions

The WAST will be developed for certain pilot river basins together with long term local partners of the ITT. While one local partner is a research institution (typically a university) the other partner is an implementing institution (typically a public authority at or under the responsible ministry). The following maps show the location of pilot basins as well as the related institutions


Pilot basins

Local institutions



  • Water Research Center (WRC), University of Khartoum

  • UNESCO Cat2 Center for Water Harvesting

  • Ministry of Water Resources and Electricity



  • Ethiopian Institute of Water Resources (EIWR)

  • Ministry of Water Irrigation and Energy – Department of Transboundary Water management

Data Sources

The water security toolbox will integrate data from open source (global and regional) data bases with data from local and national monitoring networks. The following list shows a selection of openly available data –mostly based on remote sensing data.


Data Source          


Land Use/ Cover 


GlobcoverCoverage: global; time scale: 2004 - 2006 & 2009; format: GeoTIFF, xls & jpg; resolution: 1 km; author: European Space Agency


Land Cover Characterization; coverage: global; time scale: 1992-1993; format: ASCII text & gif/jpg; resolution: 1 km;  author: USGS, UNL & EC-JRC


Land Use Systems; coverage: global; format: grid/shp; resolution: 9 km; author: FAO


Coverage: global; format: jpg, GeoTIFF & kml; resolution: variable; author: NASA


Agricultural Land-use Statistics; coverage: 134 countries; format: csv/dbf/xml & shp; author: FAO


Land remote sensing data products; coverage: global; time scale: 1960 - 2014; format: jpg & shp; resolution: variable; author: NASA & USGS


Environmental database; coverage: global; time scale: 1850 - 2015; format: csv/xls/xml & ASCII grid/shp; resolution: variable; author: UN Environmental Program


Coverage: EU countries; time scale: 2000 - 2006; format: csv/dbf/xml & shp; resolution: 100 m; author: The European Environmental Agency


Coverage: global; time scale: 2007 - 2010 & 2015; format: grid/shp; resolution: 25 m; author: Japan Aerospace Exploration Agency


Monthly irrigated and rainfed crop areas; coverage: global; time scale: 1998 - 2002; format: ASCII grid/shp; resolution: 9 km


Climate, land use, conservation, population,…; coverage: global; time scale: variable; author: SEDAC at Columbia University



Digitized Soil Maps; coverage: global; format: grid/shp; resolution: 9 km; author: FAO


Coverage: Africa; time scale: 1923 - 1997; format: jpg; resolution: 30 m; author: European Digital Archive of Soil Maps


World Soil Information; coverage: global; format: grid/shp; resolution: 0.5 degree; author: International Soil Reference and Information Centre


World Geologic Maps; coverage: global; format: dbf/xml & shp;  resolution: variable; author: USGS

IGME 5000

Geological Maps; coverage: Europe & adjacent areas; format: jpg & shp; resolution: 1/5000000; author: Federal Institute for Geosciences and Natural Resources of Germany


Digital Soil Maps; coverage: global; format: vector; resolution: 1/5000000; author: The President and Fellows of Harvard College



Precipitation data, coverage: global; time scale: 1998 - 2015; format: map, grids & Microwave Imager data; resolution: daily & hourly; author: NASA


Historical weather data; coverage: global; time scale: since 1929; format: txt & graph; resolution: daily, monthly & yearly; author: NOAA/NCDC


NASA's Earth science data; coverage: global, time scale: past & present; format: grid, jpg, TIFF, netCDF, txt…; resolution: variable; author: USGS


Climate-related data; coverage: global; time scale: variable; format: HTML, jpg/gif/png, netCDF & ASCII; resolution: daily, monthly & seasonal; author: International Research Institute for Climate and Society

RFE 2.0

Precipitation data; coverage: Africa and South Asia; time scale: Dekadal; format: GeoTiff ; resolution: 0.1°; author: USGS FEWS NET


Precipitation data; coverage: global ; time scale: daily, pentadal, decadal and monthly; format: Geotiff; resolution: 0.05° ; author: USGS FEWS NET


Precipitation data; coverage: global; time scale: monthly; format: NetCDF; resolution: 0.5°, 1.0o, 2.5o; author: Deutscher Wetterdienst


Precipitation data; coverage: Africa; time scale: Daily, dekadal (10-day), monthly and seasonal; format: NetCDF; resolution: 0.0375°; author: University of Reading

ARC 2.0

Precipitation data; coverage: Africa; time scale: Daily; format: GeoTiff; resolution: 0.1° ; author: NOAA-CPC

CRUTS v3.23

Precipitation data; coverage: Global (land areas); time scale: Monthly; format: NetCDF; resolution: 0.5° ; author: Climatic Research Unit, University of East Anglia


Precipitation data; coverage: 60oS - 60oN; time scale: 6 hourly and 3 hourly; format: NetCDF; resolution: 0.25°; author: CHRS, University of California, Irvine


Precipitation data; coverage: 60oS - 60oN; time scale: 30min, 3hourly and monthly ; format:; resolution: 8 km; author: NOAA-CPC


Precipitation data; coverage: NetCDF; time scale: Hourly, daily and monthly; format: NetCDF; resolution: 0.25° & 0.1o; author: NASA



Climate data; coverage: global; time scale: variable; format: ARC/INFO Grid; resolution: monthly; author: CGIAR International Research Centers


Actual and potential evapotranpiration data; coverage: global; time scale: 8-day, monthly, annual; format: GeoTiff; resolution: 1km; author: University of Montana


Actual evapotranpiration data; coverage: global; time scale: 30min, daily; format: HDF5; resolution: 3km; author: Eumetsat


Actual evapotranpiration data; coverage: global; time scale: daily; format MAT (Matlab):; resolution: 1km ; author: ITC, University of Twenty


Actual evapotranpiration data; coverage: global; time scale: monthly; format: ; resolution: 0.009o; author: FEWS/NET
United States Geological Survey (USGS)


Actual evapotranpiration data; coverage: global; time scale: daily; format: NetCDF; resolution: 0.25o; author: Vrije University, Gent University, European Space Agency


Actual evapotranpiration data; coverage: global; time scale: monthly; format: MAT (Matlab); resolution: 0.05o; author: Commonwealth Scientific and Industrial Research Organization (CSIRO)


Actual evapotranpiration data; coverage: Some countries in MENA region; time scale: daily; format: GeoTiff; resolution: 3km; author: NASA


Actual evapotranpiration data; coverage: global; format: GeoTiff; resolution: 30m; author: Google Earth Engine


Actual evapotranpiration data; coverage: global; time scale: monthly; format:; resolution: 0.25o and 1.0o; provider: NASA



Historical river discharges; coverage: global; time scale: since 1919; format: xls, kmz & DOS ASCII; resolution: daily, monthly & yearly; author: Global Runoff Data Centre


Hydroclimatology collections & River discharge database; coverage: global; format: ASCII text; resolution: monthly; author: ORNL DAAC


Runoff data; coverage: global; time scale: 1960's - 1993; format: ARC/INFO ASCII, graph & xls; resolution: monthly/yearly averages; author: UNESCO-IHE


Historical river discharge data; coverage: global; time scale: variable; format: ASCII & csv; resolution: monthly & yearly; author: Center for Sustainability and the Global Environment of the University of Winsconsin-Madison



Coverage: global; format: ASCII text, HDF, GeoTIFF, shp, ENVI Vector File, kml, jpg…; author: National Snow and Ice Data Center


Coverage: global; time scale: since 1992; format: txt; resolution: hourly, daily, weekly & monthly; author: NASA


Coverage: global; format: ASCII text, binary & NetCDF; resolution: monthly; author: NASA


Coverage: global; time scale: 1995 - 2012; format: CEOS/GeoTIFF, NetCDF, binary, csv & xml; resolution: monthly & seasonal; author: The Alaska Satellite Facility


Bidirectional Reflectance Distribution Function and Albedo; coverage: global; time scale: 2000 - 2015; format: raster; resolution: daily; author: NASA & USGS


Coverage: global; format: txt; resolution: daily, monthly & yearly; author: NASA


Sea ice dataset; coverage: global; time scale: since 1870; format: ASCII text, mov, png & graph; resolution: daily & yearly; author: Polar Research Group, University of Illinois


Coverage: global; time scale: since 1979; format: GeoTIFF, kmz & png; resolution: daily & monthly; author: NASA


Snow cover; coverage: 4 regions (Europe, Africa - N_Africa and S_Africa- and South America), author: the EUMETSAT

Other climatic parameters


Historical weather data; coverage: global; time scale: since 1920; format: HTML & txt; resolution: daily; author: El tiempo en España


The climatology database; coverage: global; time scale: 1901 - 2000; format: DOS ASCII/txt/HTML, xls & jpg/png/eps/svg; resolution: monthly & yearly; author: IPCC


Climate Extreme Indices dataset; coverage: global; time scale: 1951 - 2003; format: NetCDF, grid, txt & exe; resolution: variable; author: ETCCDI/CRD


Coverage: global; format: ASCII & pdf; resolution: variable; author: GCMD & NASA


Climate data; coverage: global; time scale: since 1950; format: GeoTIFF; resolution: current, past and future; author: Robert J. Hijmans, Susan Cameron, and Juan Parra, from the Museum of Vertebrate Zoology of the University of California, Berkeley (USA)


Climate change information; coverage: global; time scale: since 1900; format: maps & graph; resolution: monthly & yearly; author: World Bank


Multi-hazards dataset; coverage: global; format: ESRI (shp/dbf/ASCII/HTML); author: Center for Hazards and Risk Research (CHRR)

Water resources


Climate & water resources data; coverage: global; time scale: since 1958; format: xls, kmz & pdf; resolution: variable; author: FAO


Hydrological data; coverage: global; format: raster & vector; resolution: 3 arc-second - 5 minute; author: WWF, USGS, CIAT, TNC, CESR

Water consumption


Coverage: global; format: cvs/xls; resolution: information per country and region; author: FAO


Agricultural and water information system; coverage: countries in Africa, Asia, Latin America & the Caribbean; format: HTML text, xls & grid; resolution: information per country and region, author: FAO


Food and agriculture statistics; coverage: some countries in Africa and Asia; format: HTML text, xls & grid; resolution: information per country and region, author: FAO


Population Census and Demographic Survey Data; coverage: global; format: HTML text & xls; resolution: information per country and region; author: U.S. Census Bureau


The Livestock Production and Health Atlas; coverage: global; format: csv; resolution: 1st and 2nd administrative boundaries; author: FAO


Key Water Indicator Portal; coverage: global; format: images & tables; author: UN Water


Water risk atlas; coverage: global; format: ESRI (shp/dbf/ASCII/HTML); author: World Resources Institute


Water footprint statistics; coverage:global; format: TIFF, xls & shp; author: The Water Footprint Network


Water data; coverage: global; format: gif, xls & pdf; author: the Pacific Institute

Soil moisture

ESA - Soil Moisture CCI

coverage: global; time scale: 1978 - 2014; format: NetCDF; resolution: monthly; author: European Space Agency


coverage: global; fromat: NetCDF-4; resolution: 25 km; author: the EUMETSAT Network of Satellite Application Facilities



Coverage: global; format: gird; resolution: 30 m; author: the Japanese Miniytry of Economy, Trade and Industry (METI) & NASA


Coverage: global; format: gird; resolution: 90 m & 250 m; author: CGIAR-CSI


Coverage: global; format: gird; resolution: 30 m & 90 m; author: CGIAR-CSI


Coverage: global; format: GeoTIFF/kmz; resolution: 1 arc-minute; author: NOAA


Coverage: global; format: GeoTIFF/kmz; resolution: 30 m; author: National Science Foundation, Arizona State University


SELECTED links to other compilations of publicly available environmental data


Selected links to tools which help to analyze and interpret water related data on natural resources


Water accounting


Remote sensing

Statistics, Analytics

R-R models, hydrology

Hydrodynamic Modeling

  • FLO-2D (flood routing model)

Crop water, soil moisture dynamics and pedotransfer


References and further reading (grouped by topics):

Water Security

Anil Kumar Misra, Climate change and challenges of water and food security, International Journal of Sustainable Built Environment, Volume 3, Issue 1, June 2014, Pages 153-165, ISSN 2212-6090.

Catherine Allan, Jun Xia, Claudia Pahl-Wostl, Climate change and water security: challenges for adaptive water management, Current Opinion in Environmental Sustainability, Volume 5, Issue 6, December 2013, Pages 625-632, ISSN 1877-3435.

Claudia Pahl-Wostl, Margaret Palmer, Keith Richards, Enhancing water security for the benefits of humans and nature — the role of governance, Current Opinion in Environmental Sustainability, Volume 5, Issue 6, December 2013, Pages 676-684, ISSN 1877-3435.

Christina Cook, Karen Bakker, Water security: Debating an emerging paradigm, Global Environmental Change, Volume 22, Issue 1, February 2012, Pages 94-102, ISSN 0959-3780.

Guo-yu QIU, Jin YIN, Shu Geng, Impact of Climate and Land-Use Changes on Water Security for Agriculture in Northern China, Journal of Integrative Agriculture, Volume 11, Issue 1, January 2012, Pages 144-150, ISSN 2095-3119,

Makoto Taniguchi, Naoki Masuhara, Kimberly Burnett, Water, energy, and food security in the Asia Pacific region, Journal of Hydrology: Regional Studies, Available online 11 December 2015, ISSN 2214-5818.

M. Ajmal Khan, 14 - Food and Water Security for Dry Regions: A New Paradigm, In Halophytes for Food Security in Dry Lands, edited by Muhammad Ajmal Khan, Munir Ozturk, Bilquees Gul and Muhammad Zaheer Ahmed, Academic Press, San Diego, 2016, Pages 231-241, ISBN 9780128018545.

Ralf Ludwig, Roberto Roson, Climate change, water and security in the Mediterranean: Introduction to the special issue, Science of The Total Environment, Volume 543, Part B, 1 February 2016, Pages 847-850, ISSN 0048-9697.

Richard Lawford, Adrian Strauch, David Toll, Balazs Fekete, Douglas Cripe, Earth observations for global water security, Current Opinion in Environmental Sustainability, Volume 5, Issue 6, December 2013, Pages 633-643, ISSN 1877-3435.

Richard Lawford, Janos Bogardi, Sina Marx, Sharad Jain, Claudia Pahl Wostl, Kathrin Knüppe, Claudia Ringler, Felino Lansigan, Francisco Meza, Basin perspectives on the Water–Energy–Food Security Nexus, Current Opinion in Environmental Sustainability, Volume 5, Issue 6, December 2013, Pages 607-616, ISSN 1877-3435.

Yong Jiang, China's water security: Current status, emerging challenges and future prospects, Environmental Science & Policy, Volume 54, December 2015, Pages 106-125, ISSN 1462-9011,


Remote sensing applications in Hydrology

A. AghaKouchak, S. Sorooshian, K. Hsu and X. Gao, 5.09 - The Potential of Precipitation Remote Sensing for Water Resources Vulnerability Assessment in Arid Southwestern United States, In Climate Vulnerability, edited by Roger A. Pielke, Academic Press, Oxford, 2013, Pages 141-149, ISBN 9780123847041.

Anshuman Bhardwaj, Lydia Sam, Akanksha Bhardwaj, F. Javier Martín-Torres, LiDAR remote sensing of the cryosphere: Present applications and future prospects, Remote Sensing of Environment, Volume 177, May 2016, Pages 125-143, ISSN 0034-4257.

C. Cammalleri, M.C. Anderson, F. Gao, C.R. Hain, W.P. Kustas, Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion, Agricultural and Forest Meteorology, Volume 186, 15 March 2014, Pages 1-11, ISSN 0168-1923.

Célia Toureiro, Ricardo Serralheiro, Shakib Shahidian, Adélia Sousa, Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition, Agricultural Water Management, Available online 28 February 2016, ISSN 0378-3774.

Christopher M.U. Neale et al., Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach, Advances in Water Resources, Volume 50, December 2012, Pages 152-161, ISSN 0309-1708.

Chunqiao Song, Bo Huang, Linghong Ke, Keith S. Richards, Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 92, June 2014, Pages 26-37, ISSN 0924-2716.

Deepak Kumar, Remote Sensing Based Vegetation Indices Analysis to Improve Water Resources Management in Urban Environment, Aquatic Procedia, Volume 4, 2015, Pages 1374-1380, ISSN 2214-241X.

George P. Petropoulos, Gareth Ireland, Brian Barrett, Surface soil moisture retrievals from remote sensing: Current status, products & future trends, Physics and Chemistry of the Earth, Parts A/B/C, Volumes 83–84, 2015, Pages 36-56, ISSN 1474-7065.

Igor Klein, Andreas J. Dietz, Ursula Gessner, Anastassiya Galayeva, Akhan Myrzakhmetov, Claudia Kuenzer, Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data, International Journal of Applied Earth Observation and Geoinformation, Volume 26, February 2014, Pages 335-349, ISSN 0303-2434.

Isidro Campos, Jose González-Piqueras, Arnaud Carrara, Julio Villodre, Alfonso Calera, Estimation of total available water in the soil layer by integrating actual evapotranspiration data in a remote sensing-driven soil water balance, Journal of Hydrology, Volume 534, March 2016, Pages 427-439, ISSN 0022-1694.

J.P. Dedieu, A. Lessard-Fontaine, G. Ravazzani, E. Cremonese, G. Shalpykova, M. Beniston, Shifting mountain snow patterns in a changing climate from remote sensing retrieval, Science of The Total Environment, Volume 493, 15 September 2014, Pages 1267-1279, ISSN 0048-9697,

J.Meghan Salmon, Mark A. Friedl, Steve Frolking, Dominik Wisser, Ellen M. Douglas, Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data, International Journal of Applied Earth Observation and Geoinformation, Volume 38, June 2015, Pages 321-334, ISSN 0303-2434,

Jeffrey S. Reid et al., Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program, Atmospheric Research, Volume 122, March 2013, Pages 403-468, ISSN 0169-8095.

Jeniffer Kinoti Mutiga, Zhongbo Su, Tsahaei Woldai, Using satellite remote sensing to assess evapotranspiration: Case study of the upper Ewaso Ng’iro North Basin, Kenya, International Journal of Applied Earth Observation and Geoinformation, Volume 12, Supplement 1, February 2010, Pages S100-S108, ISSN 0303-2434.

Katja Dörnhöfer, Natascha Oppelt, Remote sensing for lake research and monitoring – Recent advances, Ecological Indicators, Volume 64, May 2016, Pages 105-122, ISSN 1470-160X.

Marc E. Ridler, Inge Sandholt, Michael Butts, Sara Lerer, Eric Mougin, Franck Timouk, Laurent Kergoat, Henrik Madsen, Calibrating a soil–vegetation–atmosphere transfer model with remote sensing estimates of surface temperature and soil surface moisture in a semi arid environment, Journal of Hydrology, Volumes 436–437, 2 May 2012, Pages 1-12, ISSN 0022-1694.

Mohamed Hassan, Evaporation estimation for Lake Nasser based on remote sensing technology, Ain Shams Engineering Journal, Volume 4, Issue 4, December 2013, Pages 593-604, ISSN 2090-4479.

Prafull Singh, Ankit Gupta, Madhulika Singh, Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques, The Egyptian Journal of Remote Sensing and Space Science, Volume 17, Issue 2, December 2014, Pages 111-121, ISSN 1110-9823.

Rébecca Filion, Monique Bernier, Claudio Paniconi, Karem Chokmani, Massimo Melis, Antonino Soddu, Manon Talazac, Francois-Xavier Lafortune, Remote sensing for mapping soil moisture and drainage potential in semi-arid regions: Applications to the Campidano plain of Sardinia, Italy, Science of The Total Environment, Volume 543, Part B, 1 February 2016, Pages 862-876, ISSN 0048-9697.

Stephanie C.J. Palmer, Tiit Kutser, Peter D. Hunter, Remote sensing of inland waters: Challenges, progress and future directions, Remote Sensing of Environment, Volume 157, February 2015, Pages 1-8, ISSN 0034-4257.

Yuting Yang, Songhao Shang, Lei Jiang, Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China, Agricultural and Forest Meteorology, Volume 164, 15 October 2012, Pages 112-122, ISSN 0168-1923.


Water indicators (e.g. floods, droughts SDG´s)

Alfred L. de Jager, Jürgen V. Vogt, Analyzing the Combined Drought Indicator (CDI): Demonstration and Analysis of its Evolution during Spring and Summer 2013- 2014, Agriculture and Agricultural Science Procedia, Volume 4, 2015, Pages 222-231, ISSN 2210-7843,

Alessio Domeneghetti, Francesca Carisi, Attilio Castellarin, Armando Brath, Evolution of flood risk over large areas: Quantitative assessment for the Po river, Journal of Hydrology, Volume 527, August 2015, Pages 809-823, ISSN 0022-1694,

Alireza Farahmand, Amir AghaKouchak, A generalized framework for deriving nonparametric standardized drought indicators, Advances in Water Resources, Volume 76, February 2015, Pages 140-145, ISSN 0309-1708,

Baoqing Zhang, Chansheng He, A modified water demand estimation method for drought identification over arid and semiarid regions, Agricultural and Forest Meteorology, Available online 5 December 2015, ISSN 0168-1923,

Bright Chisadza, Michael J. Tumbare, Washington R. Nyabeze, Innocent Nhapi, Linkages between local knowledge drought forecasting indicators and scientific drought forecasting parameters in the Limpopo River Basin in Southern Africa, International Journal of Disaster Risk Reduction, Volume 12, June 2015, Pages 226-233, ISSN 2212-4209,

G.M. Sechi, A. Sulis, Drought mitigation using operative indicators in complex water systems, Physics and Chemistry of the Earth, Parts A/B/C, Volume 35, Issues 3–5, 2010, Pages 195-203, ISSN 1474-7065,

J. Martínez-Fernández, A. González-Zamora, N. Sánchez, A. Gumuzzio, C.M. Herrero-Jiménez, Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index, Remote Sensing of Environment, Volume 177, May 2016, Pages 277-286, ISSN 0034-4257,

J. Martínez-Fernández, A. González-Zamora, N. Sánchez, A. Gumuzzio, A soil water based index as a suitable agricultural drought indicator, Journal of Hydrology, Volume 522, March 2015, Pages 265-273, ISSN 0022-1694,

Jie Zhang, Qiaozhen Mu, Jianxi Huang, Assessing the remotely sensed Drought Severity Index for agricultural drought monitoring and impact analysis in North China, Ecological Indicators, Volume 63, April 2016, Pages 296-309, ISSN 1470-160X,

Jonathan Spinoni, Gustavo Naumann, Jürgen Vogt, Paulo Barbosa, European drought climatologies and trends based on a multi-indicator approach, Global and Planetary Change, Volume 127, April 2015, Pages 50-57, ISSN 0921-8181,

Kai-yan Wang, Qiong-fang Li, Yong Yang, Ming Zeng, Peng-cheng Li, Jie-xiang Zhang, Analysis of spatio-temporal evolution of droughts in Luanhe River Basin using different drought indices, Water Science and Engineering, Volume 8, Issue 4, October 2015, Pages 282-290, ISSN 1674-2370,

Li-Na Wang, Xiao-Hong Chen, Quan-Xi Shao, Yan Li, Flood indicators and their clustering features in Wujiang River, South China, Ecological Engineering, Volume 76, March 2015, Pages 66-74, ISSN 0925-8574.

M. Herrera-Pantoja, K.M. Hiscock, Projected impacts of climate change on water availability indicators in a semi-arid region of central Mexico, Environmental Science & Policy, Volume 54, December 2015, Pages 81-89, ISSN 1462-9011,

María Pedro-Monzonís, Abel Solera, Javier Ferrer, Teodoro Estrela, Javier Paredes-Arquiola, A review of water scarcity and drought indexes in water resources planning and management, Journal of Hydrology, Volume 527, August 2015, Pages 482-493, ISSN 0022-1694,

Martha C. Anderson, Cornelio A. Zolin, Paulo C. Sentelhas, Christopher R. Hain, Kathryn Semmens, M. Tugrul Yilmaz, Feng Gao, Jason A. Otkin, Robert Tetrault, The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts, Remote Sensing of Environment, Volume 174, 1 March 2016, Pages 82-99, ISSN 0034-4257,

Nadir Ahmed Elagib, Muna M. Elhag, Major climate indicators of ongoing drought in Sudan, Journal of Hydrology, Volume 409, Issues 3–4, 9 November 2011, Pages 612-625, ISSN 0022-1694,

Nayoung Do, Sinkyu Kang, Assessing drought vulnerability using soil moisture-based water use efficiency measurements obtained from multi-sensor satellite data in Northeast Asia dryland regions, Journal of Arid Environments, Volume 105, June 2014, Pages 22-32, ISSN 0140-1963,

Sorin Ionuţ Dascălu, Mădălina Gothard, Roxana Bojariu, Marius-Victor Birsan, Roxana Cică, Ruxandra Vintilă, Mary-Jeanne Adler, Viorel Chendeș, Rodica-Paula Mic, Drought-related variables over the Bârlad basin (Eastern Romania) under climate change scenarios, CATENA, Volume 141, June 2016, Pages 92-99, ISSN 0341-8162,

Zekâi Şen, Chapter Two - Basic Drought Indicators, In Applied Drought Modeling, Prediction, and Mitigation, Elsevier, Boston, 2015, Pages 43-105, ISBN 9780128021767,


Water accounting

Bastiaanssen W., Ha L., Fenn M. 2015. Water Accounting Plus (WA+) for Reporting Water Resources Conditions and Management: A Case Study in the Ca River Basin, Vietnam. Available online at: (Accessed on 12.02.2016).

Bastiaanssen W., Karimi P., Rebelo L., Duan Z., Senay G., Muttuwatte L., Smakhtin V. 2014. Earth Observation Based Assessment of the Water Production and Water Consumption of Nile Basin Agro-Ecosystems. Remote Sensing, 6, 10306-10334.

Dost R., Obando E., Bastiaanssen W., Hoogeveen J. 2013. Water Accounting Plus (WA+) in the Awash River Basin. Coping with Water Scarcity – Developing National Water Audits Africa, FAO, Land and Water Division.

Droogers P., Simons G., Bastiaanssen W., Hoogeveen J. 2011. Water Accounting Plus (WA+) in the Okavango River Basin. Land and Water Division (NRL) of FAO Coping with Water Scarcity under project: Developing National Water Audits Africa.

Duan Z. 2014. Estimating Water Balance Components of Lakes and Reservoirs Using Various Open Access Satellite Databases. Ph.D Dissertation, Technische Universiteit Delft. Available online at: (Accessed on: 01.02.2016).

FAO 2015. Water accounting through Remote Sensing (WA+) in Helmand River Basin. FAO project TCP /AFG/3402, Analysis on water availability and uses in Afghanistan river basins. Available online at: (Accessed on 12.02.2016).

Karimi P. 2014. Water accounting plus for water resources reporting and river basin planning. PhD. Dissertation. Technical University of Delft, The Netherlands. Available online at: _phd_theses/poolad_karimi_phd_thesis.pdf (Accessed on 11.02.2016).

Karimi P., Bastiaansses W. G., Meldon D. 2013a. Water accounting plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements, hydrology and Earth System Sciences, 17, 2459-2472.

Karimi P., Bastiaanssen W., Molden D., Cheema M. 2013b. Basin-wide water accounting based on remote sensing data: an application for the Indus Basin. Hydrology and Earth System Science, 17, 2473–2486.

Medema W., B. S. McIntosh, P. J. Jeffrey. 2008. From premise to practice: a critical assessment of integrated water resources management and adaptive management approaches in the water sector. Ecology and Society, 13(2): 29-46.

Molden D. 1997. Accounting for water use and productivity. SWIM Paper 1. Colombo, Sri Lanka: International Irrigation Management Institute. Available online at: (Accessed on 15.02.2016).

Perry C. J. 2007. Efficient irrigation; inefficient communication; flawed recommendations, Irrig. Drainage, 56, 367–378.

Perry C. J., Bucknall J. 2009. Water resource assessment in the Arab world: new analytical tools for new challenges, in: Water in the Arab World: Management Perspective and Innovations, edited by: Jagannathan, N. J., Mohamed, A. S., and Kremer, A., The World Bank, Washington D.C.
Shilpakar L., Bastiaanssen W. G., Meldon D. J. 2011. A remote sensing-based approach for water accounting in the East Rapti River Basin, Nepal Rajendra. Himalayan Journal of Sciences, 7 (9), 15-30.

FaLang translation system by Faboba